Vehicles at work and reversing – three companies fined in same week after two separate fatalities

We hope you find our news updates useful. If you know of anyone who may benefit from reading them, please encourage them to register at the bottom-left of our news page (http://www.eljay.co.uk/news/) and we’ll email them a link each time an update is published. If in the unlikely event any difficulties are experienced whilst registering we’ll be more than happy to help and can be contacted on 07896 016380 or at Fiona@eljay.co.uk

In the last week, a construction company and groundwork contractor, along with a farm and its owner, have been fined after two separate incidents involving fatalites resulting from being struck by reversing vehicles.

In the first case, the construction company and groundwork contractor failed to ensure the safe movement of pedestrians and vehicles on their site. In the second case, the farm and owner failed to ensure the vehicle was maintained. It was found to be in poor condition, with dirty and badly positioned mirrors, and dirty glass in the cab, resulting in compromised visibility.

Reversing vehicles

What’s the problem?

Nearly a quarter of all deaths involving vehicles at work occur during reversing. Many other reversing accidents do not result in injury but cause costly damage to vehicles, equipment and premises.

Most of these accidents can be avoided by taking simple precautions, such as those below.

Guidance

Remove the need for reversing altogether, by setting up one-way systems, for example drive-through loading and unloading positions. Where reversing is unavoidable, routes should be organised to minimise the need for reversing.

Ensure visiting drivers are familiar with the layout of the workplace, and with any site rules. Do drivers have to report to reception on arrival?

In locations where reversing cannot be avoided:

  • ‘Reversing areas’ should be planned out and clearly marked.
  • People who do not need to be in reversing areas should be kept well clear.
  • Consider employing a trained signaller (a banksman), both to keep the reversing area free of pedestrians and to guide drivers. Be aware: The use of signallers is not allowed in some industries due to the size of vehicles involved, and the difficulty that drivers have in seeing them.
  • A signaller:
  • Will need to use a clear, agreed system of signalling.
  • Will need to be visible to drivers at all times.
  • Will need to stand in a safe position, from which to guide the reversing vehicle without being in its way.
  • Should wear very visible clothing, such as reflective vests, and ensure that any signals are clearly seen.
  • If drivers lose sight of the signallers they should know to stop immediately.
  • Consider whether portable radios or similar communication systems would be helpful.

The following steps might help to reduce the risk of reversing accidents. The following are examples, but it is unlikely that any single measure will be enough to ensure safety:

Site layouts can be designed (or modified) to increase visibility for drivers and pedestrians, for example:

  • By increasing the area allowed for reversing.
  • By installing fixed mirrors in smaller areas.

Reducing the dangers caused by ‘blind-spots’:

  • Most vehicles already have external side-mounted and rear-view mirrors fitted. These need to be kept clean and in good repair.
  • Refractive lenses fitted to rear windows or closed-circuit television systems can be used to help drivers to see behind the vehicle.
  • If drivers cannot see behind the vehicle, they should leave their cab and check behind the vehicle before reversing.

Reversing alarms can be fitted:

  • These should be kept in working order.
  • Audible alarms should be loud and distinct enough that they do not become part of the background noise.
  • where an audible alarm might not stand out from the background noise, flashing warning lights can be used.

Other safety devices can be fitted to vehicles:

  • For example, a number of ‘sensing’ and ‘trip’ systems are available, which either warn the driver or stop the vehicle when an obstruction is detected close to, or comes in contact with, the reversing vehicle.

Additionally:

  • Stops such as barriers, or buffers at loading bays can be used. They should be highly visible, and sensibly positioned.
  • Where vehicles reverse up to structures or edges, barriers or wheel stops can be used to warn drivers that they need to stop.
  • White lines on the floor can help the driver position the vehicle accurately.

For more information visit the HSE web page: http://www.hse.gov.uk/workplacetransport/information/reversing.htm or contact us on 07896 016380 or at fiona@eljay.co.uk, and we’ll be happy to help.

Contains public sector information published by the Health and Safety Executive and licensed under the Open Government Licence

 

HEALTH & SAFETY NEWS UPDATE – 8TH OCTOBER 2015

REGISTER BELOW-LEFT TO RECEIVE OUR UPDATES BY EMAIL

IN THIS UPDATE

Introduction

Gate Safety Week: 12-18 October 2015

Planning and organising lifting operations (global firms sentenced after worker killed)

Employers’ Liability Compulsory Insurance (ELCI)

Health and safety implications of pervasive computing (RFID)

Introduction

Next week is Gate Safety Week which, in the words of Powered Gate Group Chairman Neil Sampson, “is all about raising public awareness of the dangers of using a poorly installed or maintained powered gate, in the hope that we can prevent any further deaths or injuries”. The Door & Hardware Federation Powered Gate Group has published a number of documents which provide guidance on gate safety, and reference to these is made on the HSE website where the advice we share with you this week is also provided.

The need to ensure that relevant information is considered when lift plans are produced was highlighted this summer, when two global companies were sentenced after a worker was killed and another seriously injured during construction of an offshore wind farm. Lifting operations can often put people at great risk of injury, as well as incurring great costs when they go wrong. It is therefore important to properly resource, plan and organise lifting operations so they are carried out in a safe manner, and HSE guidance on this topic is provided below.

Not sure whether or not you need Employers’ Liability Compulsory Insurance (ELCI)? Chances are, unless you have no employees, or are a family business and all employees are closely related to you, that you do. So this week we explain why you need it, and – more importantly – how to get it.

And finally, we look at the implications – positive and negative – of a technological concept that is becoming something of a “buzz word” in the world of health and safety. Radio Frequency Identification, or RFID, is being successfully integrated into site safety procedures by warning pedestrians and machinery drivers of each others’ presence. However, while (as in the development of mobile telecommunications) no threat to human health has yet been proven from exposure to RF radiation, there is public concern about the nature and effects of signals from such technologies (NRPB – Mobile Phones and Health 2004).

We hope you find our news updates useful. If you know of anyone who may benefit from reading them, please encourage them to register at the bottom-left of our news page (http://www.eljay.co.uk/news/) and we’ll email them a link each time an update is published. If in the unlikely event any difficulties are experienced whilst registering we’ll be more than happy to help and can be contacted on 07896 016380 or at Fiona@eljay.co.uk

 

Gate Safety Week: 12-18 October 2015

Next week is Gate Safety Week which, in the words of Powered Gate Group Chairman Neil Sampson, “is all about raising public awareness of the dangers of using a poorly installed or maintained powered gate, in the hope that we can prevent any further deaths or injuries”. The Door & Hardware Federation Powered Gate Group has published a number of documents which provide guidance on gate safety, and reference to these is made on the HSE website where the following advice is also provided:

Powered gates: Ensuring powered doors and gates are safe (click on the link for more information: http://www.hse.gov.uk/work-equipment-machinery/powered-gates/safety.htm)

Powered door and gate safety is not just about the individual components making up the product, but about the way they are combined together to fit a particular set of circumstances, and what is done over time to maintain safety.

At all times a powered gate must respond in a safe way when any person interacts with it. Its design must take into account that foreseeable interactions may go well beyond normal use (eg children playing around or with / on the powered gate), as well as normal wear and tear, and adverse environmental influences, particular wind and rain / snow and other debris that can impair function.

Delivering safety by design and construction

Much is dependent on the way the various component parts (switches, sensors, safety devices, controllers, and motors) are assembled and connected together to respond to the particular environment of use. Safety is usually delivered by a combination of methods, including:

  • design to eliminate hazards such as: the gate running away down a slope, coming off tracks / falling over, closing gaps at hinges creating crushing points, access to parts of the mechanism or gaps between the moving leaf and other leaves (including secondary leaves on telescopic gates) or fixed parts (supports, walls, etc), gaps in railings in which heads may get stuck, etc
  • the stability and strength of mountings and foundations to adequately resist dynamic forces arising from the weight of the gate as it moves and the effects of wind loadings, so as to minimise adverse effects on actuators and sensing systems
  • fixed guarding to prevent / restrict access to drive gears, etc, fencing off the back of sliding gates to avoid shear hazards between the gate leaf and fixed parts, etc
  • speed control, including deceleration when nearing the end of travel / rotational movement where crushing hazards may arise
  • limitation of forces exerted by moving parts (which may be delivered within the gate motor itself), or in conjunction with external protective mechanisms, including pressure sensitive edges fixed to leading and other edges where crushing/impact hazards exist, to detect and cushion the impact with an obstruction
  • non-contact sensors:
  • many of these are only designed to prevent a gate closing on a vehicle (note, these beams are not usually high integrity safety devices, in fact they may need to avoid over-sensitive tripping from rain / snow and leaves, and can usually be easily circumnavigated, eg by stepping over)
  • safety beams, which as higher integrity ‘safety components’ may be deployed in some cases to avoid contact with the moving gate(s), but because of cost are less common than pressure sensitive edges
  • the way the gate is operated: hold-to-run or automatic (fully automatic or from a starting impulse), and
  • the overall behaviour of the system as delivered by the system controller (eg not just stopping when encountering an obstruction, but also backing off at least a short distance to avoid entrapment – because even being held but not crushed can still be hazardous if there is no rescue),
  • the way the system has been wired and set up during / after installation, including the quality and physical protection of wiring and the connections between all component parts, to resist damage, deterioration and water ingress that may cause the loss of the safety function (eg through short circuits), and
  • how it is subsequently maintained / set as parts wear and respond to environmental conditions (eg temperature and wind forces, particularly on close boarded hinged gates which may experience high wind loadings that the drive motors may not always be able to overcome).

All these factors must be considered as part of the initial design (through suitable risk assessment), specification and construction, and appropriate information provided in the User Instructions, including on routine maintenance and the nature and periodicity of safety checks. Lifetime product safety doesn’t just depend on design and construction, but the way it is used and looked after, often by others not involved in original design and construction.

Maintaining for safety

Component parts can wear and fail, sometimes catastrophically. Like most machinery, powered doors and gates need to be maintained to remain safe. Powered gates forming parts of workplaces or in common parts of residential complexes will be subject to health and safety law. Owners, occupiers, landlords and managing agents will have on-going responsibilities for the safety of all users and all those who may encounter the gate.

Those undertaking work on powered gates are responsible for what they do, and for leaving the machinery in a safe condition, which may include switching off and isolating from power if it needs to be left in an unsafe condition. Substantial modifications may require re-assessment, in some cases re-CE marking by the person undertaking the modifications.

Risk assessment, competence and training

Whilst there may be standard components, even final products, the huge range of locations in which they are installed and variable environmental conditions to which they are exposed mean that most powered gates will be unique products requiring some form of specific risk assessment, both for installation and subsequent use. It is therefore not possible to define standard solutions for safety: each powered gate must be considered individually and holistically, employing suitable risk assessment tools and knowledge / expertise to manage the risks on a case by case basis.

Many organisations offer general training on risk assessment, and within the UK powered gate industry both Gate Safe and the Door and Hardware Federation can provide specific powered gate awareness / competence training.

Those working with powered gates need various competencies depending on their role. Often different members of a team will bring different skills to the job, eg electricians for wiring up and checking the basic safety of the electrical components. In some cases to evaluate component performance specific equipment or instruments may be required. For example, where force limitation is the primary means of safety some form of objective force testing may be required to ensure the final product as delivered is within safe limits, and to subsequently check the product remains safe. This may require additional specific competencies, and suitable record keeping.

Use of standards for design, assessment and testing

There are a number of current standards which are relevant to powered gates, including:

  • BS EN 13241-1 the Product Standard for powered gates (and relevant to the CPR)
  • BS EN 12604 & BS EN 12605 on mechanical requirements and tests
  • BS EN 12453 & BS EN 12445 on requirements and test for powered gates
  • BS EN 12635 on installation and use
  • BS EN 12978 on safety devices for power operated doors and gates
  • BS EN 60335-2-103 on drives for household and similar gates
  • BS EN 60335-2-95 on drives for residential vertically moving garage doors

but at present adherence to these standards alone in many cases will not ensure that all of the mandatory requirements for safety (the EHSRs of the Machinery Directive) will be met.

In particular hazards may remain with regard to:

  • Hinges, because of the way forces measured as specified by the above standards are ‘amplified’ closer to the pivot point, especially where crushing / trapping hazards have not been removed by design / construction (which may be less easy to avoid when converting existing gates to powered operation). A child fatality incident in 2006 was in part attributed to the design of the hinge area of a hinged gate.
  • Shear gaps, especially on sliding gates between moving leaves and fixed parts (or in some cases where leaves pass each other, eg telescopic sliding gates.
  • Force limitation, because published research (Mewes & Mauser 2003)1 suggests that the maximum impact forces permitted by the standards may not always be appropriate for the most vulnerable members of society (children, etc) who may reasonable encounter powered gates.
  • Control systems, because the key standard (BS EN 12453) does not define minimum requirements for safety integrity and reliability in all cases.

The use of any of the above standards by manufacturers for product safety is not mandatory (although products in scope of EN 13241-1 may have to be issued with a Declaration of Performance under the Construction Products Regulation). And the use of the main safety requirements standard EN 12453 does not currently give a ‘presumption of conformity’ with the Machinery Directive 2006/42/EC.

Therefore manufacturers will have to show in detail in the technical file for each powered gate how they have designed and constructed the gate to meet the EHSRs and be safe for the gate’s foreseeable lifetime, taking account of foreseeable misuse, as well as intended use.

If you require any clarification at all, or further information, please don’t hesitate to contact us on 07896 016380 or at Fiona@eljay.co.uk, and we’ll be happy to help.

 

Planning and organising lifting operations (global firms sentenced after worker killed)

The need to ensure that relevant information is considered when lift plans are produced (to ensure that all of the relevant risks are considered) was highlighted this summer, when two global companies were sentenced after a worker was killed and another seriously injured during construction of an offshore wind farm.

The incident happened in May 2010, when a team of engineers were loading wind turbine blades onto a sea barge for delivery to a wind farm off the Suffolk coast. During loading of the components, a 2.11 tonne part of the blade transport arrangement fell off, crushing and fatally injuring one worker and seriously injuring another.

The investigation carried out by HSE found serious safety failings in the two firms’ management systems for the loading operation, which allowed vital parts of equipment to go unchecked before being lifted.

Following a four-week trial in July, prosecuted by the Health and Safety Executive (HSE), the two companies were ordered to pay fines and costs totalling in excess of £1 million between them.

Speaking after the hearing, an HSE Inspector said: “This incident could easily have been avoided had suitable systems and procedures been in place to ensure that all loads were properly connected whilst being lifted. Had the right questions been asked when the lift was being planned and had the bolt and two brackets holding the blade and frame together been checked before they were lifted, the death and serious injury of two workers could have been prevented.”

Planning and organising lifting operations

Lifting operations can often put people at great risk of injury, as well as incurring great costs when they go wrong. It is therefore important to properly resource, plan and organise lifting operations so they are carried out in a safe manner. Each of these elements requires a person or people with sufficient competence to be involved at each step. These people should have sufficient theoretical and practical knowledge of the work and equipment in question, as well as the requirements of the law, to be able to do this properly. For complex and high-risk operations, the planning and organisation should be extensive and meticulous.

Planning

The planning of individual routine lifting operations may be the responsibility of those who carry them out (eg a slinger or crane operator). But for much more complex lifting operations (eg a tandem lift using multiple cranes), a written plan should be developed by a person with significant and specific competencies – adequate training, knowledge, skills and expertise – suitable for the level of the task.

For straightforward, common lifting operations, a single initial generic plan may be all that is required (eg fork-lift trucks in a factory), which could be part of the normal risk assessment for the activity. However, from time to time it may be necessary to review the plan to make sure that nothing has changed and the plan remains valid. Routine lifting operations which are a little more complex may, depending on the circumstances, need to be planned each time the lifting operation is carried out.

The plan for any lifting operation must address the foreseeable risks involved in the work and identify the appropriate resources (including people) necessary for safe completion of the job. Factors to include may be any or all of the following:

  • working under suspended loads
  • visibility
  • attaching / detaching and securing loads
  • environment
  • location
  • overturning
  • proximity hazards
  • derating
  • lifting people
  • overload
  • pre-use checking
  • continuing integrity of the equipment

The plan should set out clearly the actions involved at each step of the operation and identify the responsibilities of those involved. The degree of planning and complexity of the plan will vary and should be proportionate to the foreseeable risks involved in the work.

Strength and stability

Lifting equipment must be of adequate strength for the proposed use. The assessment of this should recognise that there may be a combination of forces to which the lifting equipment, including the accessories, will be subjected. The lifting equipment used should provide an appropriate ‘factor of safety’ against all foreseeable types of failure. Where people are lifted, the factor of safety is often higher. Any lifting equipment selected should not be unduly susceptible to any of the foreseeable failure modes likely to arise in service, for example fracture, wear or fatigue.

Positioning and installation

The position of mobile lifting equipment or the location of fixed installations can have a dramatic effect on the risks involved in a lifting operation. It is vital to take all practical steps to avoid people being struck by loads or the equipment itself during use. The equipment should also be positioned to minimise the need to lift over people. Measures should be taken to reduce the risk of load drift (eg spinning, swinging, etc); and of the load falling freely or being released unintentionally. Many different methods have been developed to prevent falling loads, including the use of multiple ropes or chains, hydraulic check valves and nets for palletised loads.

Measures must be taken to ensure that people cannot fall down a shaft or hoistway. At access points to these areas, effective means to prevent access should be in place, such as gates, barriers or doors. Where access is required to enter the area, when a platform or car is present (eg a lift), the doors or gates should be interlocked to allow the gates to open only when the car is present.

When positioning lifting equipment, care must be exercised to avoid hazards arising from proximity, for example: coming into contact with overhead power lines, buildings or structures; coming too close to trenches, excavations or other operations; and coming into contact with buried underground services, such as drains and sewers.

Working under suspended loads

Where it can be avoided, loads should not be suspended over occupied areas. Where it cannot be avoided, the risks to people must be minimised by safe systems of work and appropriate precautions. Where loads are suspended for significant periods, the area below them should be classed as a danger zone, where access is restricted.

Supervision of lifting operations

Supervision should be proportionate to the risk, taking account of the competencies and experience of those undertaking the lift. Many everyday lifting operations do not require direct supervision (eg experienced fork-lift operators undertaking routine lifts), although there may be circumstances where supervisory assistance may be required to manage risk (eg lifting an unusual load, crossing a public road etc). From time to time, employers may need to monitor the competence of workers undertaking lifting operations to ensure they continue to be carried out safely.

Guidance on planning, organising and undertaking lifting operations

More detailed advice on the planning, organising and undertaking of lifting operations is provided in the LOLER Approved Code of Practice and guidance (http://www.hse.gov.uk/pubns/books/l113.htm). Particular guidance is given on:

  • competence of people planning lifting (regulation 8; ACOP para 210 onwards)
  • suitability, including strength and stability, of lifting equipment (regulation 4; ACOP para 98 onwards)
  • positioning of lifting equipment and visibility (regulation 6; ACOP paras 161 and 237 onwards)
  • working under suspended loads (regulation 8; ACOP para 230 onwards)
  • attaching / detaching and securing loads (regulation 8; ACOP para 244 onwards)
  • location, including access (ACOP paras 256 and 62 onwards)
  • environment of use, including operator protection, the effects of wind and mobility (regulation 8; ACOP paras 83, 253, 89 and 112 onwards)
  • overturning (regulation 8; ACOP para 258 onwards)
  • proximity to other hazards, such as overhead power lines and buried services (regulation 8; ACOP para 265 onwards)
  • derating (regulation 8; ACOP paras 111 and 274 onwards)
  • the lifting of people (regulation 5; ACOP para 127 onwards)
  • preventing overload (regulation 4; ACOP para 122 onwards)
  • pre-use checks (regulation 8; ACOP para 285 onwards)
  • the continued integrity of lifting equipment (regulation 8; ACOP para 289 onwards)

For more information, visit the HSE web page http://www.hse.gov.uk/work-equipment-machinery/planning-organising-lifting-operations.htm (click on the link), or contact us on 07896 016380 or at Fiona@eljay.co.uk, and we’ll be more than happy to help.

 

Employers’ Liability Compulsory Insurance (ELCI)

A Woolwich restaurant owner has recently been fined £1,500 plus £1,779 costs for failing to provide Employers’ Liability Compulsory Insurance (ELCI). Speaking after the hearing at Maidstone Magistrates’ Court, an HSE Inspector said: “Every employer needs to ensure that they have Employers’ Liability Compulsory Insurance in place, where such breaches, as in this case, are identified they will be pursued by the HSE.”

Get insurance for your business

If your business has employees you will probably need employers’ liability insurance.

If an employee is injured or becomes ill as a result of the work they do for you, they can claim compensation from you.

Meeting your health and safety duties is easier than you think. As long as you have taken reasonable steps to prevent accidents or harm to your employees (and the injury or illness was caused after 1 October 2013), you shouldn’t have to pay compensation. However, if a court finds you are liable, employers’ liability insurance will help you to pay any compensation for your employees’ injuries or illness.

Only a few businesses are not required to have employers’ liability insurance. If you have no employees, or are a family business and all employees are closely related to you, you may not need it. For further details see HSE leaflet Employers’ Liability (Compulsory Insurance) Act 1969: A brief guide for employers (free to download by clicking on the link: http://www.hse.gov.uk/pubns/hse40.htm).

How do you get employers’ liability insurance?

You can buy employers’ liability insurance through insurers or intermediaries like brokers or trade associations. You may find that it often comes as part of an insurance package designed to cover a range of business needs.

Your policy must be with an authorised insurer and the Financial Conduct Authority (FCA) has a list of these. You can check their register on the FCA website (http://www.fca.org.uk/).

If you require any clarification at all, or further information, please don’t hesitate to contact us on 07896 016380 or at Fiona@eljay.co.uk, and we’ll be more than happy to help.

 

Health and safety implications of pervasive computing (RFID)

This describes the concept of embedding or integrating computers into the environment with a view to enabling people to interact with them in a more “natural” way. Also referred to amongst other descriptions as “ubiquitous computing” or “ambient intelligence”, current examples include the use of Radio Frequency Identification (RFID) tags and GPS systems in vehicles. Wireless networking technology (WiFi) is a key enabler for many of the applications and there is a growing trend towards greater connectivity through the use of broadband. For example in Philadelphia, “officials view broadband as an essential social service” and plan to introduce web access for all their citizens via a city-wide wireless network by the end of 2006.

Extensions of pervasive computing, which are being investigated actively at the moment include devices which sense changes in their environment and adapt and act on these changes, through to work on human-computer interactions and artificial intelligence.

In the short term, rapid expansion is expected in the use of RFID technology, where a vast range of applications are envisaged, offering benefits such as increased productivity and improved resource utilisation, together with reduced cycle times and re-work. All elements of the supply chain from raw material input through to delivery of product to the customer are potentially amenable to some form of RFID control and monitoring. In addition to logistics and product tracking applications, examples of the implementation of RFID technologies are foreseen in areas as diverse as personal identification, anti-counterfeiting, payment systems, maintenance management and healthcare.

Implications:

  • Increased exposure of the workforce (and customers in retail environments) to RF radiation is likely to result from the extended use of WiFi and the more powerful/ longer range WiMax technologies. While, as in the development of mobile telecommunications, no threat to human health has yet been proven from such exposure, there is public concern about the nature and effects of signals from such technologies (NRPB – Mobile Phones and Health 2004).
  • As with other computer-based systems, there is the potential for malicious or accidental corruption of the data stored on RFID tags, which could pose a threat, particularly where safety-critical applications such as e.g. maintenance monitoring are involved.
  • It is possible that intensive tracking of personnel activity in the workplace may result in stressors that may in turn contribute to increased incidences of stress.

Click on the link to read the RFID Technology short form report: http://www.hse.gov.uk/horizons/assets/documents/rfidsfreport.pdf

Our comment

There are positive implications too, in the form of “wearable technology” which is being successfully integrated into site safety procedures by warning pedestrians and machinery drivers of each others’ presence. A small RFID transponder is worn on pedestrians’ hard hats or sleeves, and a small unit fitted to vehicles. Both pedestrian and driver receive a warning if they become close enough to each other to be at risk of accidental collision. Warnings are automatically logged as incidents and the information is used by managers to monitor safety training requirements.

Contains public sector information published by the Health and Safety Executive and licensed under the Open Government Licence